Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            HEX-Pis a probe-class mission concept that will combine high spatial resolution X-ray imaging ( FWHM) and broad spectral coverage (0.2–80 keV) with an effective area superior toNuSTARabove 10 keV to enable revolutionary new insights into a variety of astrophysical problems, especially those related to compact objects, accretion and outflows.HEX-Pwill launch at a time when the sky is being routinely scanned for transient gravitational wave, electromagnetic and neutrino phenomena that will require the capabilities of a sensitive, broadband X-ray telescope for follow up studies. These include the merger of compact objects such as neutron stars and black holes, stellar explosions, and the birth of new compact objects. A response time to target of opportunity observation requests of hours and a field of regard of 3πsteradians will allowHEX-Pto probe the accretion and ejecta from these transient phenomena through the study of relativistic outflows and reprocessed emission, provide unique capabilities for understanding jet physics, and potentially revealing the nature of the central engine.more » « less
- 
            Abstract The surfaces of neutron stars are sources of strongly polarized soft X-rays due to the presence of strong magnetic fields. Radiative transfer mediated by electron scattering and free–free absorption is central to defining local surface anisotropy and polarization signatures. Scattering transport is strongly influenced by the complicated interplay between linear and circular polarizations. This complexity has been captured in a sophisticated magnetic Thomson scattering simulation we recently developed to model the outer layers of fully ionized atmospheres in such compact objects, heretofore focusing on case studies of localized surface regions. Yet, the interpretation of observed intensity pulse profiles and their efficacy in constraining key neutron star geometry parameters is critically dependent upon adding up emission from extended surface regions. In this paper, intensity, anisotropy, and polarization characteristics from such extended atmospheres, spanning considerable ranges of magnetic colatitudes, are determined using our transport simulation. These constitute a convolution of varied properties of Stokes parameter information at disparate surface locales with different magnetic field strengths and directions relative to the local zenith. Our analysis includes full general relativistic propagation of light from the surface to an observer at infinity. The array of pulse profiles for intensity and polarization presented highlights how powerful probes of stellar geometry are possible. Significant phase-resolved polarization degrees in the range of 10%–60% are realized when summing over a variety of surface field directions. These results provide an important background for observations to be acquired by NASA’s new Imaging X-ray Polarimetry Explorer X-ray polarimetry mission.more » « less
- 
            Abstract Magnetars, isolated neutron stars with magnetic-field strengths typically ≳10 14 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day −1 , constraining the density of the driving region to ρ ∼ 10 10 g cm −3 , at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.more » « less
- 
            Abstract We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν ̇ = − 6.2 ( 1 ) × 10 − 14 Hz s −1 , and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission.more » « less
- 
            Abstract We report the discovery of the unusually bright long-duration gamma-ray burst (GRB), GRB 221009A, as observed by the Neil Gehrels Swift Observatory (Swift), Monitor of All-sky X-ray Image, and Neutron Star Interior Composition Explorer Mission. This energetic GRB was located relatively nearby ( z = 0.151), allowing for sustained observations of the afterglow. The large X-ray luminosity and low Galactic latitude ( b = 4.°3) make GRB 221009A a powerful probe of dust in the Milky Way. Using echo tomography, we map the line-of-sight dust distribution and find evidence for significant column densities at large distances (≳10 kpc). We present analysis of the light curves and spectra at X-ray and UV–optical wavelengths, and find that the X-ray afterglow of GRB 221009A is more than an order of magnitude brighter at T 0 + 4.5 ks than that from any previous GRB observed by Swift. In its rest frame, GRB 221009A is at the high end of the afterglow luminosity distribution, but not uniquely so. In a simulation of randomly generated bursts, only 1 in 10 4 long GRBs were as energetic as GRB 221009A; such a large E γ ,iso implies a narrow jet structure, but the afterglow light curve is inconsistent with simple top-hat jet models. Using the sample of Swift GRBs with redshifts, we estimate that GRBs as energetic and nearby as GRB 221009A occur at a rate of ≲1 per 1000 yr—making this a truly remarkable opportunity unlikely to be repeated in our lifetime.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
